Anal. Calcd for $C_{16}H_{10}NO_4$: C, 66.4; H, 6.6; N, 4.8. Found: C, 66.5; H, 6.7; N, 4.7.

Distillation of the crude dehydrogenation product at 148 °C (5 × 10⁻⁴ mm) gave only dimethyl indole-6,7-dicarboxylate: IR 1750 cm⁻¹ (ν C=O); NMR δ 3.84 (s, 3), 3.85 (s, 3), 6.50 (dd, 1), 7.22 (d, 1), 7.26 (m, 1), 7.72 (d, 1).

Anal. Calcd for $C_{12}H_{11}NO_4$: C, 61.8; H, 4.75; N, 6.0. Found: C, 62.2; H, 5.2; N, 5.6.

Dimethyl 1-Methylindole-4,7-dicarboxylate. 1-Methyl-2vinylpyrrole (0.43 g, 0.004 mol) in benzene (15 mL) was refluxed with methyl propiolate (0.67 g, 0.008 mol) and hydroquinone (0.01 g) for 2 days. The volume was reduced to 5 mL, and petroleum ether (bp 40–60 °C) was added to give the indole diester: 0.48 g (73%); mp 69–70 °C; IR 1710 cm⁻¹ (ν C==O); NMR δ 3.38 (s, 3), 3.88 (s, 6), 6.98 (d, 1), 7.11 (d, 1), 7.48 (d, 1), 7.70 (d, 1).

Anal. Calcd for $C_{13}H_{13}NO_4$: C, 63.1; H, 5.3; N, 5.7. Found: C, 63.6; H, 5.6; N, 6.1.

Dimethyl 1-phenylindole-4,7-dicarboxylated (yield 59%; mp 105.5 °C) was prepared by a method analogous to that used for the 1-methyl derivative: IR 1710 cm⁻¹ (ν C=O); NMR δ 3.16 (s, 3), 3.98 (s, 3), 7.2–7.5 (m, 7), 7.52 (d, 1), 7.93 (d, 1).

Anal. Calcd for $C_{18}H_{15}NO_4$: C, 69.9; H, 4.9; N. 4.5. Found: C, 70.0; H, 4.9; N, 4.5.

Methyl 1-tert-Butyl-4,5-dihydroindole-7-carboxylate. 1-tert-Butyl-3-vinylpyrrole (1.49 g, 0.01 mol) in benzene (10 mL) was refluxed with methyl propiolate (0.84 g, 0.01 mol) in the presence of hydroquinone (0.05 g) for 3 days. The solvent and unchanged vinylpyrrole (0.5 g) were removed under reduced pressure, and the residue was distilled to give the dihydroindole-7-carboxylic ester (0.65 g, 44% based on reacted unrecovered vinylpyrrole) as a yellow oil: bp 115–116 °C (0.05 mm); IR 1710 cm⁻¹ (ν C=O); NMR δ 1.43 (s, 9), 2.0–2.5 (m, 4), 3.71 (s, 3), 5.91 (d, 1), 6.46 (t, 1), 6.73 (d, 1).

Anal. Calcd for $C_{14}H_{19}NO_2$: C, 72.1; H, 8.2; N, 6.0. Found: C, 71.9; H, 8.2; N, 5.85.

Methyl 1-*tert*-Butylindole-7-carboxylate. Aromatization of the 4,5-dihydroindole-7-carboxylic ester with DDQ gave methyl 1-*tert*-butylindole-7-carboxylate (78%), which was purified by elution from a column of alumina with petroleum ether (bp 40–60 °C)-diethyl ether (4:1): IR 1710 cm⁻¹ (ν C=O); NMR δ 1.65 (s, 91), 3.86 (s, 3), 6.45 (d, 1), 6.98 (t, 1), 7.25 (dd, 1), 7.35 (dd, 1), 7.64 (dd, 1).

Anal. Calcd for $C_{14}H_{17}NO_2$: N, 6.1; m/e 231.1255 (M⁺). Found: N, 6.5; m/e 231.1258 (M⁺).

Distillation of the ester at 115 °C (0.001 mm) caused partial decomposition with the loss of the *tert*-butyl group.

Dimethyl 1-*tert*-Butylindole-4,7-dicarboxylate. 1-*tert*-Butyl-3-vinylpyrrole (0.45 g, 0.003 mol) and methyl propiolate (0.8 g, 0.01 mol) in benzene (10 mL) were heated under reflux in the presence of hydroquinone (0.05 g) for 4 days. Removal of the solvent and chromatographic purification of the residual oil gave the thermally unstable dimethyl 1-*tert*-butylindole-4,7-dicarboxylate: 0.57 g (66%); NMR δ 1.64 (s, 9), 3.86 (s, 3), 3.88 (s, 3), 6.77 (d, 1), 7.20 (d, 1), 7.45 (d, 1), 7.70 (d, 1).

Anal. Calcd for $C_{16}H_{19}NO_4$ (M⁺): m/e 289.1314. Found: m/e 289.1325.

Distillation of the diester at ca. 150 °C (5×10^{-4} mm) caused considerable decomposition with the loss of the *tert*-butyl group.

Kinetic Measurements. The ¹H NMR spectra of equimolar equivalents of 1-methyl-2-vinylpyrrole and the appropriate dienophile in CDCl₃, containing 1,2-dichlorobenzene as a standard, were measured periodically. The average of ten integration values for the vinyl signals at 4.50 and 5.42 ppm and a suitable signal characteristic of the cycloadducts were normalized by comparison with the intensity of the aromatic signals for the standard.

Registry No. 1a, 2540-06-9; **1b**, 74304-92-0; **2**, 74304-93-1; **5**, 74809-21-5; **6**, 74809-22-6; **7**, 74809-23-7; **9** ($\mathbf{R} = \mathbf{Me}$), 74825-03-9; **9** ($\mathbf{R} = \mathbf{Ph}$), 74809-24-8; **10**, 74809-25-9; **11**, 74809-26-0; **12**, 74809-27-1; 2-formyl-1-methylpyrrole, 1192-58-1; 2-formyl-1-phenylpyrrole, 30186-39-1; 1-tert-butyl-3-formylpyrrole, 30186-46-0; maleic anhydride, 108-31-6; 1-methyl-4,5,6,7-tetrahydroindole-cis-4,5-dicarboxylic anhydride, 74809-28-2; 1-phenyl-4,5,6,7-tetrahydroindole-cis-4,5-dicarboxylic anhydride, 74809-29-3; 1-tert-butyl-4,5,6,7-tetrahydroindole-cis-4,5-dicarboxylic anhydride, 74809-29-3; 1-tert-butyl-4,5,6,7-tetrahydroindole-cis-4,5-dicarboxylic anhydride, 74809-30-6; dimethyl 1-methyl-4,5,6,7-tetrahydroindole-cis-4,5-dicarboxylate, 74809-31-7; dimethyl maleate, 624-48-6; maleonitrile, 928-53-0; cis-

4,5-dicyano-1-methyl-4,5,6,7-tetrahydroindole, 74809-32-8; trans-4,5-dicyano-1-methyl-4,5,6,7-tetrahydroindole, 74809-33-9; fumaronitrile, 764-42-1; methyl 1-methyl-4,5,6,7-tetrahydroindole-4carboxylate, 74809-34-0; methyl acrylate, 96-33-3; 4-cyano-1methyl-4,5,6,7-tetrahydroindole, 74809-35-1; acrylonitrile, 107-13-1; dimethyl acetylenedicarboxylate, 762-42-5; dimethyl 1-methyl-6,7dihydroindole-4,5-dicarboxylate, 74809-36-2; dimethyl 1-phenyl-6,7dihydroindole-4,5-dicarboxylate, 74809-37-3; dimethyl 1-methylindole-4,5-dicarboxylate, 74809-38-4; dimethyl 1-phenylindole-4,5dicarboxylate, 74809-38-5; methyl propiolate, 922-67-8; methyl 1tert-butyl-4,5-dihydroindole-7-carboxylate, 74809-25-9.

Facile and Efficient Carboalkoxylation and Carboaryloxylation of Amines

Yasuyuki Kita, Jun-ichi Haruta, Hiroko Tagawa, and Yasumitsu Tamura*

Faculty of Pharmaceutical Sciences, Osaka University, 133-1 Yamada-kami, Suita, Osaka, Japan

Received March 24, 1980

Recently, we demonstrated the synthesis of alkyl and aryl isopropenyl carbonates (1) and their carboalkoxylating and carboaryloxylating capacity in the reaction with amines (eq 1).¹ They react with amines in the absence

 \cap

of base or catalyst to give the corresponding N-carboalkoxylated and N-carboaryloxylated compounds (2) in good yields and acetone is the single side product. These characteristics should make them interesting reagents, but their reactivity is not strong enough, especially in the reaction with weakly basic amines. We now report potentially efficient reagents, α -methoxyvinyl carbonates (3), which can react with various types of amines including weakly basic amines in quantitative yields under extremely mild conditions and can be handled under ordinary conditions.²

The unknown reagents 3 were prepared by the reaction of $bis[(carbomethoxy)methyl]mercury^3$ as the enolate equivalent⁴ with alkyl and aryl chloroformates (eq 2). The

⁽¹⁾ Tamura, Y.; Haruta, J.; Okuyama, S.; Kita, Y. Tetrahedron Lett. 1978, 3737.

.00/0 © 1980 American Chemical Society

⁽²⁾ These reagents are very soluble in common organic solvents and stable enough to be allowed to stand at room temperature for a few weeks or to be stored in the refrigerator for more than several months after the reagent bottle is flushed with nitrogen.

reagent bottle is flushed with nitrogen. (3) Bis((carbomethoxy)methyl]mercury was readily prepared by the passage of ketene into mercury(II) oxide and mercury(II) acetate in absolute methanol: Lutsenko, I. F.; Foss, V. L.; Ivanova, N. L. Dokl. Akad. Nauk SSSR 1961, 141, 1107; Chem. Abstr. 1961, 56, 12920d.

reaction of the carbonates (3a-c) with amines is generally carried out by employing equivalent amounts of the reagent 3 and amine (except for the case of an aromatic amine) in a solvent such as methylene chloride or carbon tetrachloride and proceeds completely at low temperature for a short period to give the desired N-carboalkoxylated or N-carboaryloxylated compound (2) accompanied by the volatile methyl acetate (bp 56.9 °C) as a single side product (eq 3). However, under the same conditions, the reaction

with weakly basic amines such as aromatic amines took many hours to go to completion. By the use of 5 equiv of 3 the reaction time was shortened. Evaporation of the reaction mixture gave almost pure desired 2, which was purified by microdistillation, recrystallization, or column chromatography. The reaction was performed with various types of amines. Selective N-monocarboalkoxylation of diamino compounds was observed by the use of equivalent amounts of 3a and complete N,N'-dicarboalkoxylations were done by the use of 3 equiv of 3a. Although we have not as yet investigated the limitations imposed on the reaction by the presence of other functional groups in detail, weakly basic groups such as the hydroxyl group, were found not to cause interference. Thus, an amino alcohol readily reacts with 3a to give the corresponding N-carboethoxylated compound as the sole product in a high yield. As indicated in Table I, the conditions were extremely mild and the yields were uninformly high compared with the previously reported method.¹

The application of the above method to amino acids was briefly examined. Carboethoxylation with 3a simply requires stirring a dioxane-water or methanol solution of amino acid with equivalent amounts of 3a and a 50% excess of triethylamine at room temperature for a short period.

The reaction using 3 presumably occurs by initial addition of the amine to the carbonyl carbon of the reagent (3), subsequent decomposition proceeding with an interor intramolecular proton tranfer, e.g., ii, and is undoubtedly accelerated by the favorable enol-keto transformation.⁵

Experimental Section⁶

General Preparation of Alkyl and Aryl α -Methoxyvinyl Carbonates (3a-c). Ethyl chloroformate (0.5 mol) was added dropwise with stirring to a previously warmed solution of bis-[(carbomethoxy)methyl]mercury (0.1 mol) in dry benzene or toluene (50 mL) at 80 °C over 1 h and stirring was continued at the same temperature for 2 days. After removal of the solvent, the residual liquid was extracted with n-pentane (250 mL) and the extract was concentrated. Distillation gives a 43-54% yield of 3a: bp 88-90 °C (26 mmHg); ¹H NMR (CDCl₃) δ 1.33 (t, 3 H), 3.63 (s, 3 H), 3.72 (d, 1 H), 3.92 (d, 1 H), 4.23 (q, 2 H); IR (CHCl₃) 1765, 1675 cm⁻¹; exact mass calcd for $C_6H_{10}O_4$ 146.0578, found 146.0575. Anal. Calcd for C₆H₁₀O₄: C, 49.31; H, 6.90. Found: C, 49.45; H, 7.00.

Similarly, other carbonates (3b,c) were prepared; 3b: 36% yield; bp 75-76 °C (35 mmHg); ¹H NMR (CDCl₃) δ 3.63 (s, 3 H), 3.74 (d, 1 H), 3.80 (d, 3 H), 3.92 (d, 1 H); IR (CHCl₃) 1775, 1680 cm⁻¹; exact mass calcd for C₅H₈O₄ 132.0422, found 132.0427. 3c: 18% yield; bp 41 °C (0.06 mmHg); ¹H NMR (CDCl₃) δ 3.68 (s, 3 H), 3.82 (d, 1 H), 4.07 (d, 1 H), 7.15-7.45 (m, 5 H); IR (CHCl₃) 1775, 1670 cm^{-1} ; exact mass calcd for $C_{10}H_{10}O_4$ 194.0577, found 194.0574.

General Procedure for Conversion of Amine into N-(Carboalkoxy)- or N-(Carboaryloxy)amine. To a solution of phenethylamine (1 mmol) in carbon tetrachloride (5 mL), cooled in ice, was added 3a (1.1 mmol). After 1 min the solvent was removed in vacuo and the residue was distilled to give N-(carboethoxy)phenethylamine, identical in all respects with an authentic sample.⁷

General Procedure for Conversion of Amino Acid into N-(Carboalkoxy)amino Acid. To a solution of L-phenylalanine (1 mmol) in methanol (2 mL) was added triethylamine (1.5 mmol). After the mixture was stirred at room temperature for 30 min, a solution of 3a (1 mmol) in methanol (0.5 mL) was added, and the mixture was stirred at room temperature for 3 h, acidified by 5% methanolic citric acid, and concentrated. The residue was extracted with chloroform, and the extract was concentrated in vacuo to give a solid, which was recrystallized from a 25% aqueous methanol to give pure N-(carboethoxy)-L-phenylalanine, identical in all respects with an authentic sample.⁸

(5) Analogous types of useful reagents using enol-keto transformation have been reported. Silylating agent: Kita, Y.; Haruta, J.; Segawa, J.; Tamura, Y. Tetrahedron Lett. 1979, 4311. Acylating agent: (a) Was-serman, H. H.; Wharton, P. S. Tetrahedron 1958, 3, 321; (b) Wasserman, H. H.; Wharton, P. S. J. Am. Chem. Soc. 1960, 82, 661; (c) van Melick, J. E. W.; Wolters, E. T. M. Synth. Commun. 1972, 2, 83; (d) Banks, G. R.; Cohen, D. Proc. Chem. Soc. 1963, 83. Phosphorylating agent: (e) Pudovik, A. N. Zh. Obshch. Khim, 1956, 26, 2238; Chem. Abstr. 1957, 51, 1827a; (f) Pudovik, A. N.; Biktimirova, L. G. Zh. Obshch. Khim, 1957, 27, 1708; Chem. Abstr. 1958, 52, 3714b; (g) Lichtenthaler, F. W. Chem. Rev. 1961, 607; (h) Wasserman, H. H.; Cohen, D. J. Org. Chem. 1963, 29, 1817. 29, 1817

(6) IR absorption spectra were recorded on a Hitachi EPI-G2 spectrometer, 1 H NMR spectra on a Hitachi R-20A spectrometer with tetramethylsilane as an internal standard, and mass spectra on a Hitachi RMU-6MG mass spectrometer at 20 eV

- (8) Kanao, S. J. Pharm. Soc. Jpn. 1946, 66, 6; Chem. Abstr. 1951, 45, 7957d

 - (9) Shriner, R. L.; Child, R. G. J. Am. Chem. Soc. 1952, 74, 549.
 (10) Dannley, R. L.; Lukin, M. J. Org. Chem. 1957, 22, 268.
 (11) Joullié, M. M.; Day, A. R. J. Am. Chem. Soc. 1954, 76, 2990.
- (12) Mitzlaff, M.; Warning, K.; Jensen, H. Justus Liebigs Ann. Chem. 1978, 1713.
- (13) Staab, H. A.; Mannschreck, A. Chem. Ber. 1962, 95, 1284.
 (14) Spiteller, G.; Bretschneider, H. Monatsh. Chem. 1961, 92, 183.
- (15) Whitehead, C. W.; Traverso, J. J. J. Am. Chem. Soc. 1955, 77, 5872
- (16) Petersen, S.; Piepenbrink, H.-F. Methoden Org. Chem. (Hou-
- ben-Weyl) 1952, 8, 139. (17) Laakso, T. M.; Reynolds, D. D. J. Am. Chem. Soc. 1957, 79, 5717. (18) Najer, H.; Chabrier, P.; Giudicelli, R. Bull. Soc. Chim. Fr. 1959, 611
- (19) Najer, H.; Chabrier, P.; Giudicelli, R. Bull. Soc. Chim. Fr. 1959. 1611.
 - Foye, W. O.; Fedor, L. R., Jr. J. Am. Pharm. Assoc. 1959, 48, 412.
 Schuller, W. H.; Niemann, C. J. Am. Chem. Soc. 1951, 73, 1644.

⁽⁴⁾ For reports on the use of bis(keto)mercurials as the enolate equivalents, see: (a) Nesmeyanov, A. N.; Lutsenko, I. F.; Khomutov, R. M.; Dubovitskii, V. A. Zh. Obshch. Khim. 1959, 29, 2817; Chem Abstr. 1960, 54, 12048b. (b) Murahashi, S.; Nozakura, S.; Fuji, S.; Kikukawa, K. Bull. Chem. Soc. Jpn. 1965, 38, 1905. (c) Lutsenko, I. F.; Foss, V. L.; Nesmeyanov, A. N. Dokl. Akad. Nauk SSSR 1966, 169, 117; Chem. Abstr. 1966, 61, 125282. (d) Lutsenko, L. F.: Bullachenko, C. S. Nesmeyanov, A. N. Dokl. Akad. Nauk SSSR 1966, 169, 117; Chem. Abstr.
1966, 65, 135333. (d) Lutsenko, I. F.; Baukov, Yu. I.; Burlachenko, G. S.;
Khasapov, B. N. J. Organomet. Chem. 1966, 5, 20. (e) Kruglaya, O. A.;
Baukov, Yu. I.; Petrov, B. I.; Vyazankin, N. S. Zh. Obshch. Khim. 1971, 41, 1408; Chem. Abstr. 1971, 75, 88734. (f) Chauzov, V. A.; Vodolazskaya, V. M.; Kitaeva, N. S.; Baukov, Yu. I. Zh. Obshch. Khim. 1973, 43, 597;
Chem. Abstr. 1973, 79, 41775. (g) House, H. O.; Auerbach, R. A.; Gall, M.; Peet, N. P. J. Org. Chem. 1973, 38, 514. (h) Novikova, Z. S.; Sadovnikov, N. P.; Zdorova, S. N.; Lutsenko, I. F. Zh. Obshch. Khim. 1974, 42 9235: Chem. Abstr. 1975, 82, 43519. (i) Olofson R. A. Bauman B. 44, 2233; Chem. Abstr. 1975, 82, 43519. (i) Olofson, R. A.; Bauman, B. A.; Wancowicz, D. J. J. Org. Chem. 1978, 43, 752. Exclusive formation of O-acylated products in α -mercurialkanones is explained by either shielding of the α carbon atom by mercury atom or the involvement of a transition state, such as i, in which the mercury atom acts as an intermolecular catalyst.

⁽⁷⁾ Métayer, M. Bull. Soc. Chim. Fr. 1951, 802.

Table I. Preparation of N-Carboalkoxylated and N-Carboaryloxylated Amines

		res	igent 3			
				bp, ^{c°C} (torr)	reagent 1	
amine	product 2 ^a	reaction conditions	yield, % ^b	[mp, ^{c°C} (recryst solvent)]	reaction conditions ^d yield	ld, % ^b
Ph NH2	Ph AHCO ₂ C ₂ H ₅	1 equiv of 3a, CCl ₄ , 0 °C, 1 min	96 (75)	116-117 (3) ^e	5 equiv of 1a, 65 °C, 6 h	0 6
	Phr WHCO2CH3	1 equiv of 3b CH_2CI_2 , 20 °C, 15 min	94 (73)	$137 - 138 (0.9)^{f}$	5 equiv of 1b, 55 °C, 6 h 91	95
	Ph~	1 equiv of 3c CH ₂ Cl ₂ , 0 °C, 1 min	85 (76)	$[89-90 (n-hexane)]^g$	5 equiv of 1c, 40 °C, 3 h	83
Ph WHCH3	Ph~N~CO ₂ C ₃ H ₅	1 equiv of 3a, CH ₂ Cl ₂ , 20 °C, 10 min	97 (84)	97–98 (2) ^h	5 equiv of 1a, 65 °C, 2 days	88
2	Nco ₂ c ₂ H ₅	1 equiv of 3a, CH ₂ Cl., 0 °C, 1 min	96 (77)	$61-62(3)^{i}$	5 equiv of 1a, 55 °C, 6 h	95
	Mco ₂ CH ₃	1 equiv of 3b, $\mathrm{CH_1Cl_1, 0~^\circ C, 1}$ min	88 (82)	79-80 (13) ^j	5 equiv of 1b, 55 °C, 6 h	91
Č,	0 NOO2C2H5	1 equiv of 3a, CH ₂ Cl ₂ , 0 °C, 1 min	95 (82)	$72-73(5)^{k}$	5 equiv of 1a, 55 °C, 6 h	83
2	MCO ₂ C ₂ H ₅	1 equiv of 3a, CH ₂ Cl ₂ , 20 °C, 2 h	87 (75)	71-72 (6) ¹	5 equiv of 1a, ^m 55 °C, 2 days 84	84
Phote: Ph	PhNHCO ₂ C ₂ H ₅ NHCO ₂ C ₂ H ₅	5 equiv of 3a, CCl,, 60 °C, 3 h	80 (71)	$[51-52(H_20)]^n$	5 equiv of $1a,^m$ 65 °C, no reaction	
		5 equiv of 3a, CCI ₄ , 60 °C, 30 min	(02) 26	[75-76 (Et ₂ 0)]°	5 equiv of $1a, m$ 65 °C, no reaction	
2HN NH	H2N NHCO2C2H5	1 equiv of $3a$, CCl,, 20 °C, 10 min	97 (71)	$106-107 (2)^{p}$		
		3 equiv of 3a, CCl ₄ , 20 °C, 10 min	07 (71)	[108-109 (EtOH)] ^q		
HO	HO NHC02C2H5	1 equiv of 3a, CH ₂ Cl ₂ , 20 °C, 5 min	99 (71)	$124-125(3)^r$		
H-C-H	HO	1 equiv of 3a , CH ₂ Cl ₂ , 20 °C, 5 min	66) (16)	$105-106 (2.5)^{s}$		
т С ОН	HONNOPCH'S	1 equiv of 3a, CH ₂ Cl ₂ , 20 °C, 20 min	(02) 66	$132-133$ $(3)^{t}$		
L-H-NCHCO2H CH2Ph	соусучь соусучь соусучь соусучь соусучь	1 equiv of 3a, MeOH or dioxane-H ₂ O, 20 °C, 3 h	97 (85)	[79.5-81.5 (MeOH-H ₂ O)] ^u		
₽-Н ₂ NCHCO ₂ H СН <u>2</u> М	H2024	1 equiv of $3a$, MeOH, 20 °C, $3 h$	85 (83)	[80-81 (MeOH)] ^v		
H ² OO H	L- CO2C2H5	1 equiv of 3a , MeOH, 20 °C, 30 min	85 (83)	$[57-58 \text{ (petroleum ether)}]^{w}$		
^{<i>a</i>} All known pro yields were based parentheses. ^{<i>c</i>} U ^{<i>c</i>} C (0.5 torr). ^{<i>g</i>} \neq ^{<i>j</i>} Lit. ¹² bp 42 °C (added. ^{<i>n</i>} Lit. ¹⁴ n 190-192 °C (20 to	oducts were identified on amine and purity of incorrected boiling po Anal. Calcd for C_1, H_1 0.2 torr). $k \text{ Lit}, ^{16} \text{ bp}$ np 53 °C. o Lit. ¹⁵ mp orr). $u \text{ Lit}.^8$ mp 81 °	I by comparison with authentic samples. N of the products (>95%) was determined by int and melting point are given. ^d Reactio ${}_{18}NO_{3}$: C, 74.67; H, 6.27; N, 5.80. Found ${}_{18}NO_{3}$: C (1 torr). ^d Lit. ¹³ bp 105-107 °C (1 p 79 °C. ^p Lit. ¹⁶ bp 128-130 °C (4 torr). C, lit. ²¹ nnp 85 °C. ^w Lit. ²¹ mp 85 °C. ^w	lew compoun r GLC. Distil ns were perfo ns were (23; f tor). a Lit. ¹⁷ mp J Lit. ²² mp 62-	ds were characterized by 'H NMR led or recrystallized yields carried rmed without any solvent. ^e Lit H, 6.08; N, 6.04. ^h Lit. ¹⁰ bp 106 catalytic quantity of <i>p</i> -toluenesu catalytic quantity of <i>p</i> -toluenesu catalytic guantity bp 140–142 °C (63 °C.	8, IR, exact mass, and analytical data. ^b Iso d out on a 6-8-mmol scale of amine are giver . ⁷ bp 145-148 °C (13 torr). ^f Lit. ⁹ bp 118 ⁹ bp 145-148 °C (13 torr). ^f Lit. ⁹ bp 10 0-101 °C (2.5 torr). ⁱ Lit. ¹¹ bp 63 °C (2 tor ulfonic acid or concentrated sulfuric acid was 5 torr). ^s Lit. ¹⁹ bp 128 °C (5 torr). ^f Lit. ²⁰	en in en in 8-124 orr). 7as 2º bp

Registry No. 1a, 63436-79-3; 1b, 70867-35-5; 1c, 16308-68-2; 2 (R = Et; R' = H; R'' = CH₂CH₂Ph), 6970-83-8; 2 (R = Me; R' = H; R'' = CH₂CH₂Ph), 26011-68-7; 2 (R = Ph; R' = H; R'' = CH₂CH₂Ph), 56379-81-8; 2 (R = Et; R' = Me; R'' = CH₂Ph), 59325-17-6; 2 (R = Et; R' = R'' = $-(CH_2)_4-$), 5470-26-8; 2 (R = Me; R' = R'' = $-(CH_2)_4-$), 56475-80-0; 2 (R = Et; R' = R'' = $-CH_2CH_2CH_2CH_2CH_2-$), 6976-49-4; 2 (R = Et; R' = R'' = -CH=NCH=-CH-), 19213-72-0; 2 (R = Et; R' = R'' = Ph), 101-99-5; 2 (R = Et; R' = H; R'' = (1-naphthalenyl)), 19188-90-0; 2 (R = Et; R' = H; R'' = CH₂CH₂NH₂), 36553-29-4; 2 (R = Et; R' = H; R'' = CH₂CH₂NHCO₂C₂H₃), 818-42-8; 2 (R = Et; R' = H; R'' = (CH₂)₃OH), 74877-62-6; 2 (R = Et; R' = H; R'' = CH₂CH₂NH(CH₂OH), 74877-63-7; 2 (R = Et; R' = R'' = $-CH_2CH_2N(CH_3CH_2OH)$. = Et; R' = H; $R'' = CH_2CH_2Ph$), 6970-83-8; 2 (R = Me; R' = H; R'' (CH₂)₃O(1), (4817-02-0, 2 (R = Et, R' = II), R' = CH(CH₃)CH₂O(1), 74877-63-7; 2 (R = Et; R' = R'' = $-CH_2CH_2N(CH_2CH_2OH)-CH_2CH_2-$), 14000-66-9; 2 (R = Et; R' = H; R'' = CH(CH₂Ph)CO₂H) (L isomer), 19887-32-2; 2 (R = Et; R' = H; R'' = CH(CH₂Ph)CO₂H) (D isomer), 21488-23-3; 2 (R = Et; R' = $R'' = -CH(CO_2H)$ -CH₂CH₂CH₂) (L isomer), 5700-74-3; 3a, 74877-64-8; 3b, 74877-65-9; 3c, 74877-66-0; phenethylamine, 64-04-0; N-methylbenzenemethanamine, 103-67-3; pyrrolidine, 123-75-1; morpholine, 110-91-8; 1Himidazole, 288-32-4; benzeneamine, 62-53-3; 1-naphthalenamine, 134-32-7; 1,2-ethanediamine, 107-15-3; 3-amino-1-propanol, 156-87-6; 2-amino-1-propanol, 78-91-1; 1-piperazineethanol, 103-76-4; Lphenylalanine, 63-91-2; D-phenylalanine, 673-06-3; L-proline, 147-85-3; ethyl chloroformate, 541-41-3; bis[(carbomethoxy)methyl]-mercury, 3600-21-3; methyl chloroformate, 79-22-1; phenyl chloroformate, 1885-14-9.

(22) Baker, J. C.; Ough, C. S. J. Agric. Food Chem. 1976, 24, 528.

Reactions of [3-(Dimethylamino)-2-azaprop-2-en-1-ylidene]dimethylammonium Chloride with Methyl Ketones, Primary Amines, and Unsubstituted Amides

John T. Gupton,* Cesar Colon, Charles R. Harrison, Michael J. Lizzi, and Dale E. Polk

Department of Chemistry, University of Central Florida, Orlando, Florida 32816

Received April 29, 1980

Considerable interest has recently developed concerning the preparation¹ and utilization² of preformed imminium salts. In 1960 Gold³ described the preparation of a novel imminium salt, [3-(dimethylamino)-2-azaprop-2-en-1-ylideneldimethylammonium chloride (1), but little has been done since then to clarify its synthetic utility and mode of reaction.

Gold has shown that 1 can be prepared in quantitative yield from cyanuric chloride and N,N-dimethylformamide (see Experimental Section) and that this reagent can be reacted with hydrazines to yield 1,2,4-triazoles. In this

(a) A. Eschenmosher, J. Schreiber, H. Magg, and N. Hashimoto, Angew. Chem., Int. Ed. Engl., 10, 330 (1971);
 (b) T. A. Bryson, G. H. Bonitz, C. J. Reichel, and R. E. Dardis, J. Org. Chem., 45, 524 (1980).
 (2) (a) S. Danishefsky, T. Kitahara, R. McKee, and P. F. Shuda, J. Am. Chem. Soc., 98, 6715 (1976);
 (b) S. Danishefsky, P. F. Shuda, T. Kitahara, and S. J. Etheredge, *ibid.*, 99, 6066 (1977);
 (c) J. Hooz and J. N. Bridson, *ibid.*, 95, 602 (1973);
 (d) C. C. Poulter, J. L. Roberts, and P. S. Borromeo, Tetrahedron Lett., 1299 (1977);
 (e) G. Kunst and L. F. Tietze, Angew. Chem., Int. Ed. Engl., 15, 239 (1976);
 (f) N. L. Holy and Y. F. Wang, J. Am. Chem. Soc., 99, 944 (1977).
 (3) H. Gold, Angew. Chem., 72, 956 (1960); Chem. Abstr., 57, 4542d (1962).

Table I						
R	NH2 -	+ 1 {	N=CH-N(CH3)2			
entry	R	% yield ^a	bp or mp, °C			
1	4-Me	74	177 (30 mm)			
			[lit. ⁵ 163 (30 mm)]			
2	2-Me ^b	97	85 (3 mm)			
3	4-NO,	84	74-75			
	-		(lit. ⁶ 82-83)			
4	4-Br ^c	86	118 (3 mm)			
5	$2 \cdot NH_2^d$	76	169–171 ⁽			
		-	(lit. ⁷ 172-174)			

^a The yields reported refer to isolated products and nonoptimized conditions. All reaction products, with the exception of benzimidazole, were synthesized independently by the reaction of the appropriate amine with N,N-dimethylformamide dimethyl acetal.⁸ An authentic sample of benzimidazole was obtained from Nutritional Biochemicals of Cleveland, OH. All reaction products gave NMR and IR spectra and TLC behavior identical with gave NMR and IR spectra and TLC behavior identical with those of the authentic samples. ^b NMR (CDCl₃) δ 2.26 (s, 3 H), 2.98 (s, 6 H), 6.98 (m, 4 H), 7.38 (s, 1 H); IR (CHCl₃) 1640, 1600, 1480, 1370, 730 cm⁻¹; UV (EtOH) 253 (ϵ 10 400), 235 nm (10 200); mass spectrum, *m/e* (relative intensity) 162 (76), 147 (47), 118 (100). ^c For spectral data, see the experimental section. ^d The product of this reaction was benzimidazole.

investigation it was also found that amidines⁴ reacted with 1 to give either 2-monosubstituted or 2,4-disubstituted

^{(1) (}a) A. Eschenmosher, J. Schreiber, H. Magg, and N. Hashimoto,

^{(1962).}

⁽⁴⁾ Benzamidine and guanidine were the amidines studied.
(5) H. Meerwein, W. Florian, N. Schön, and G. Stopp, Justus Liebigs Ann. Chem., 641, 1 (1961). (6) H. Bredereck, F. Effenberger, and T. Brendle, Angew. Chem., 78,

^{(7) &}quot;Aldrich Handbook of Fine Chemicals", Aldrich Chemical Co.,